best

What is the best diet for humans? | Eran Segal | TEDxRuppin

Translator: Rhonda Jacobs Reviewer: Leonardo Silva

This is me ten years ago.

I weighed 40 pounds more than today,

and like many people, I wanted to lose weight.

Like many people, I wanted to know what is the best diet for humans.

Many of us actually have an opinion about this question.

Some believe that a low fat, plant-based diet is the best.

Others, that a low-carb diet,

rich in protein and animal fat, is the best.

Others have opinions on how much sugar we should eat,

or how much salt, cholesterol, saturated fat, eggs or dairy products

we should have in our diet.

But the question of what the best diet is,

is a scientific one,

so there should be no room for opinions or beliefs.

If Diet A is really better than Diet B,

then a study that compares the two on enough people

should show that definitively.

No opinions, no beliefs, just hard data, right?

What is also clear is that if the best diet does exist,

then we haven't yet found it

because the incidence of diet-related disease

has increased dramatically in the past several decades.

Now, you might think it's because people don't listen to what we tell them.

But in fact, that's not true,

people actually generally do follow dietary guidelines.

But according to the Center for Disease Control,

if you live in the United States,

there's over a 70 percent chance that you're either overweight, diabetic

or have non-alcoholic fatty-liver disease.

And there's overwhelming evidence that diet and lifestyle

are major drivers of these conditions.

So why is it that after so much research,

we still don't have an answer to the seemingly simple question

of what is the best diet for humans?

What I'd like to propose to you today is that the reason we don't have an answer

is because we've been asking the wrong question.

And it's the wrong question because it assumes

that the best diet depends only on the food

and not on the person eating it.

But what if differences in our genetics, lifestyle, our gut bacteria

cause us to respond differently to food?

What if these differences explain why some diets work for some people

but not for others?

What if our nutrition needs to be personally tailored to our unique make-up?

This is exactly the question we set out to ask in our own research,

which I did with my colleague Eran Elinav

and several graduate students from the Weizmann Institute of Science.

To take a scientific approach,

we first searched for a metric of healthy nutrition that we should study.

Most studies examine weight loss or risk of heart disease after some diet.

But the problem is that these are affected by many factors unrelated to diet,

they take many weeks to change,

and in the end, you get a single measure of success.

And if it didn't work, well then it's very hard to understand why.

And so instead, we searched for a metric

that would still be relevant for weight management

and diet-related disease,

but one that we could also easily and accurately measure across many people.

And this led us to focus on blood glucose levels,

and more precisely, changes in blood glucose levels after a meal.

We call this a "meal glucose response."

Why is it important?

Well, because high glucose levels after a meal

promote both hunger and weight gain.

After we eat,

our body digests the carbohydrates in the food into simple sugars

and releases them into the bloodstream.

From there, with the help of insulin,

cells throughout our body remove the glucose from the blood

so that they can use it as a source of energy.

But insulin also signals our body to convert excess sugar into fat

and store it,

and that's a primary way by which we gain weight.

In addition, fast flow of glucose into the blood

often causes our body to release too much insulin,

which could lower our glucose levels to below baseline,

making us feel hungry and eat more.

Meal glucose responses are also very relevant for our health

because they've been shown to be risk factors for obesity,

diabetes, cardiovascular disease and other metabolic disorders.

A recent study that followed 2,000 people for over 30 years

found that higher meal glucose levels after meals

predict overall higher mortality.

Finally, and not least important, with recent technological advances,

we can now follow a person's glucose levels continuously

for an entire week.

And since the average person eats around 50 meals a week,

it allows us to measure glucose responses to 50 meals in just a single week.

Meal glucose responses also provide us

with a way to directly measure the effect of every single meal,

as opposed to common approaches

that only evaluate the effect of an overall diet.

Now, of course, there are many factors beyond glucose levels

that influence a healthy diet.

But this is a very important one,

and solving it can be a major step forward.

Luckily for us, we managed to convince 1,000 healthy people of this idea,

and we connected them to one of these small glucose sensors

and tracked their glucose levels continuously for an entire week.

And during that week, participants logged everything that they ate

on a mobile app that we developed.

And so that allowed us to measure glucose responses

to 50 different meals for each person

and around 50,000 different meals across all 1,000 participants,

making our study the largest one

that was ever done on this problem until today.

So what did we find?

Well, when we looked at averages, we saw trends.

For example, more carbohydrates in the meal

generally increase the response.

This is not so surprising.

Another, perhaps more surprising, trend

is that more fat in the meal generally decreased the response.

But - and this is the key finding of our study -

for every trend we found,

there were many people who were very different from it.

Basically, when the same person ate the same meal on different days,

the response was very similar.

But when different people ate the same meal,

the response was very different.

For example, white bread induced almost no effect

on the blood sugar levels of some people,

but in others, it induced huge spikes.

And the same was true for every single food we tested,

including rice, pizza, sushi and even chocolate.

For every food, there were some people who had low responses,

others who had medium responses,

and yet others that had very high responses.

It wasn't just about the food,

it was also about the person eating it.

So while averages and trends are informative,

for any given individual, they may not mean much.

Now, it wasn't just about how good the body was at handling sugar,

each person had different foods that spiked his levels.

Some people even had opposite responses.

For example, some people spiked for ice cream but not for rice.

But then others spiked for rice and not for ice cream.

In fact, more people spiked for rice than for ice cream.

Now, my wife is a clinical dietician,

so when I showed her this data, she was shocked,

because as a practitioner, she of course relies on general dietary guidelines,

and so one of the first things

that she tells her many newly diagnosed pre-diabetics

is to stop eating foods such as ice cream

and instead eat more complex carbohydrates such as brown rice.

So, as soon as she saw our data,

she of course realized that for most of her patients

not only does her dietary advice not help,

but in fact, it pushes them faster to develop the very same disease

that her advice was meant to prevent.

So these results of ours on such a large data set

convinced us that responses to food are personal,

and that diets that maintain normal blood glucose levels

must therefore be personally tailored to the individual.

They also show, in our view, why the current nutritional paradigm

that searches for that one best diet is inherently flawed.

The best diet for humans does not exist.

Our responses to food are personal,

so our dietary advice must also be personal.

And personalized dietary advice was our next challenge.

To tackle it, we measured many parameters across participants

that we thought may explain people's variability

in glucose response to meals.

And these included basic metrics and lifestyle factors like age, weight,

height and physical activity,

but also blood tests, medical background and food frequency questionnaires,

and also DNA sequencing of both the human genome

and the gut bacteria composition of each person.

Now, of these, the gut bacteria

was perhaps the most novel component that we examined.

For hundred of years, we know that bacteria live within our body.

But only with recent advances in DNA sequencing

could we begin to study them extensively.

And when we did, we found that this vast collection

of hundreds of different species that we each host,

collectively termed "our microbiome,"

has a major impact on our health and disease.

And what makes the microbiome even more exciting

is that unlike our genetics, we can also change it

even by simple means, such as changing what we eat.

Our bacteria help us digest some of the food that we eat,

and in turn, produce molecules that are taken by our own cells

and affect our physiology.

For example, in our own research, we studied artificial sweeteners,

which the vast majority of us consume on a daily basis

in various diet soda drinks and other products.

And we found that consumption of artificial sweeteners

alters the composition of the gut bacteria such that when transferred into mice

causes the mice to develop symptoms of diabetes.

And so this and several other studies

led us to ask whether the microbiome would also be important

for explaining people's glucose variability in response to meals.

And so we took this microbiome and other clinical data that we collected,

and we used advanced machine learning algorithms

to automatically search for rules

that predict personalized glucose responses to meals.

For example, one such rule could be

that if you're over 50, and you have a certain bacterial species,

then your response to a banana will be high.

The overall algorithm combined tens of thousands of such rules

that it automatically deduced from the data.

This approach is actually similar

to how websites like Amazon make book recommendations,

except that we applied it to how people respond to food.

And we could show that this algorithm could then take any person,

even people who are not part of our original study,

and predict the response to arbitrary meals with high accuracy.

So as a final step, we asked whether we can also use this algorithm

to design personalized diets that normalize blood glucose levels.

So we recruited and profiled new participants,

and we asked the algorithm to predict two diets for each person;

in one diet, which we called the "bad diet,"

we asked the algorithm to predict foods

for which that person would have high responses.

And in the other - "good diet" -

we asked it to predict foods for which that person would have low responses.

And each person then followed each diet for one week.

Now, by design, the diets had to be identical in calories.

In fact, all breakfasts, lunches and dinners

had the same calories on different days.

And it's also important to note

that each person received a different personalized diet,

and there were even some foods

that were given to some people on their good diet

but to others on their bad diet.

Now, to show you that these diets

are not the obvious ones you might think of,

here they are for one of our participants.

Now, take a moment and see if you can guess for yourself

which one the algorithm predicted to be the good diet

and which to be the bad diet for this particular participant.

And as you look at these, notice that each diet contains foods

that would not typically appear in standard diets.

And now for fun, let's play a quick guessing game,

and you all have to participate.

So, raise your hand if you think the diet on the right is the good one.

Okay. Now raise your hand if you think the diet on the left is the good one.

Okay, definitely we see nearly a 50/50 split here,

showing you that it's definitely not trivial to guess.

And I can tell you that for this participant,

the algorithm predicted the diet on the right,

the one with the ice cream, to be the good one.

And so now the only question is how good did these diets work.

And what I'll show you next is in our view

perhaps the most striking result that came out of our study.

So here are the continuous glucose levels

of this participant when following the bad diet.

And you can clearly see abnormally high glucose levels after meals

indicating that this participant has impaired glucose tolerance

and is likely pre-diabetic.

But on the good diet, the one with the ice cream

and the same amount of calories as the bad diet,

this same pre-diabetic participant achieved fully normal blood glucose levels

without even a single spike across the entire week.

Obviously, we were very happy to find out these results,

and, in fact, we found similar results for most participants

for which we designed personalized diets using our algorithm.

Now, not only that, but the good diet also induced several consistent changes

in the gut bacteria of most participants.

And it seemed that these changes were beneficial,

because bacteria that in other studies were associated with good outcomes

tended to increase after the good diet,

and bacteria associated with disease tended to decrease.

And this result is of course very intriguing

because it suggests that in addition to normalizing blood glucose levels

during the intervention week,

the good diet also induced beneficial effects

that may persist even beyond the intervention week.

So what's the take-home message from all of this?

Well, based on the glucose responses variability

that we saw across 1,000 people,

our conclusion is that there is no single best diet for humans

because we are all too different.

It also means that if a certain diet hasn't worked for you,

then maybe it was the wrong diet for you.

Your dietary failures may not be your fault.

Your diet may have failed

simply because it did not take information about you as an individual into account.

So what can you do with this information now?

Well, right now, you can actually measure

your personal glucose responses to your favorite meals

using simple glucose devices that you can buy at your local drug store.

And I guarantee that you'll be surprised

at which foods personally spike your glucose levels and which do not.

As a more complete solution,

we are working hard to make our algorithms available to everyone

so that you'll be able, from your home,

to provide basic clinical information about yourself,

send a sample of your microbiome,

and in return receive personalized dietary advice.

We are also starting longer-term dietary intervention studies

in both pre-diabetics and diabetics that will go on for a full year.

Because we believe that if the effect of normalizing blood glucose levels

that we were able to obtain in one week could persist for a longer time period,

then we might be able to reverse, and even cure, these conditions,

which constitute one of the worst epidemics of our times.

More broadly,

I believe that we are entering a new era in the study of nutrition,

one in which we will move away from asking what is the best diet for humans,

and instead, focus on the more appropriate question

of what is the best diet for me.

Thank you very much.

(Applause)